

The Ideal Diode

Kizito NKURIKIYEYEZU, Ph.D.

Readings

- Read section 4.1 on pages 175- 184
- Do and understand example 4.2 on page 181
- Do exercises 4.1, 4.2 and 4.3 on page 179
- Do exercises 4.4 and 4.5 and 4.3 on page 183

¹Readings are based on Sedra & Smith (2014), Microelectronic Circuits 7th edition. ²Bold reading section are mandatory. Other sections are suggested but not required readings

Kizito NKURIKIYEYEZU, Ph.D.

The Ideal Diode

May 23, 2022 1 / 14

- There exist some signal processing functions that can be only implemented by nonlinear circuit
 - generation of dc voltages from the ac power supply
 - signal generations (e.g., square waves, ninusoids waves)
 - digital logic
 - memory circuits
- A diode is a fundamental nonlinear circuit element.

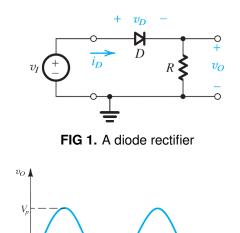
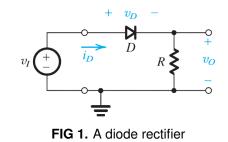
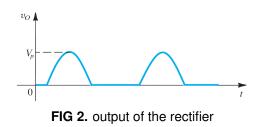
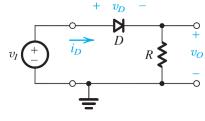
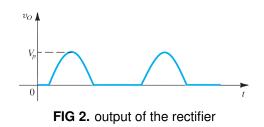
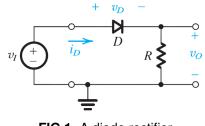




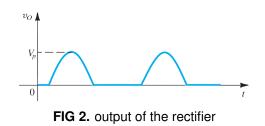
FIG 2. output of the rectifier

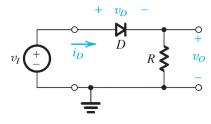

0

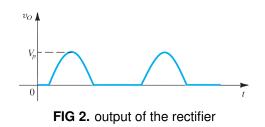
- There exist some signal processing functions that can be only implemented by nonlinear circuit
 - generation of dc voltages from the ac power supply
 - signal generations (e.g., square waves, ninusoids waves)
 - digital logic
 - memory circuits
- A diode is a fundamental nonlinear circuit element.




- There exist some signal processing functions that can be only implemented by nonlinear circuit
 - generation of dc voltages from the ac power supply
 - signal generations (e.g., square waves, ninusoids waves)
 - digital logic
 - memory circuits
- A diode is a fundamental nonlinear circuit element.




- There exist some signal processing functions that can be only implemented by nonlinear circuit
 - generation of dc voltages from the ac power supply
 - signal generations (e.g., square waves, ninusoids waves)
 - digital logic
 - memory circuits
- A diode is a fundamental nonlinear circuit element.



- There exist some signal processing functions that can be only implemented by nonlinear circuit
 - generation of dc voltages from the ac power supply
 - signal generations (e.g., square waves, ninusoids waves)
 - digital logic
 - memory circuits
- A diode is a fundamental nonlinear circuit element.

- There exist some signal processing functions that can be only implemented by nonlinear circuit
 - generation of dc voltages from the ac power supply
 - signal generations (e.g., square waves, ninusoids waves)
 - digital logic
 - memory circuits
- A diode is a fundamental nonlinear circuit element.

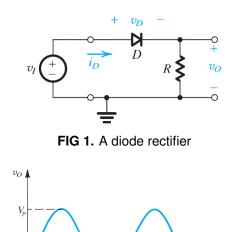
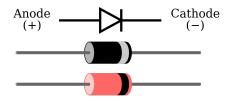


FIG 2. output of the rectifier


0

What is a diode

Diodes are essentially one-way current gates

- Diodes are made of semiconductors

 usually silicon—that consist of stack of p-doped and n-doped silicon to form a p-n junction
- A diode has two terminals and typically allows the flow of current in one direction only.

FIG 3. Typical diode packages in same alignment as diode symbol. Thin bar depicts the cathode¹

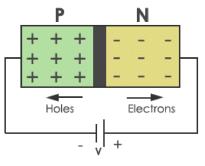
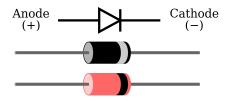



FIG 4. n-types and p-type arrangement in a diode

What is a diode

- Diodes are essentially one-way current gates
- Diodes are made of semiconductors

 usually silicon—that consist of stack of p-doped and n-doped silicon to form a p-n junction
- A diode has two terminals and typically allows the flow of current in one direction only.

FIG 3. Typical diode packages in same alignment as diode symbol. Thin bar depicts the cathode¹

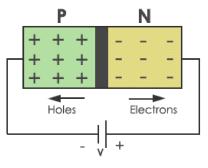
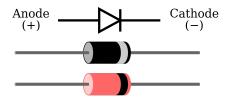



FIG 4. n-types and p-type arrangement in a diode

What is a diode

- Diodes are essentially one-way current gates
- Diodes are made of semiconductors

 usually silicon—that consist of stack of p-doped and n-doped silicon to form a p-n junction
- A diode has two terminals and typically allows the flow of current in one direction only.

FIG 3. Typical diode packages in same alignment as diode symbol. Thin bar depicts the cathode¹

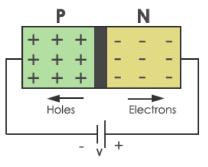
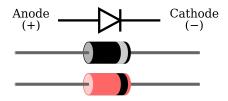



FIG 4. n-types and p-type arrangement in a diode

What is a diode?

- cathode —negative terminal, from which current flows
- anode —positive terminal of diode, into which current flows

FIG 5. Typical diode packages in same alignment as diode symbol. Thin bar depicts the cathode¹

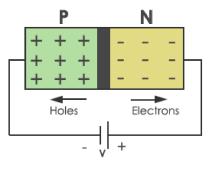
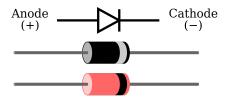



FIG 6. n-types and p-type arrangement in a diode

What is a diode?

- cathode —negative terminal, from which current flows
- anode —positive terminal of diode, into which current flows

FIG 5. Typical diode packages in same alignment as diode symbol. Thin bar depicts the cathode¹

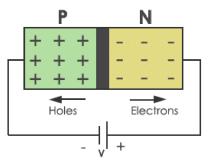
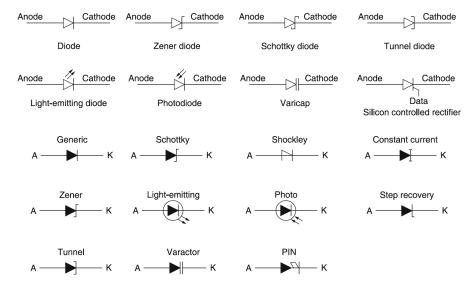


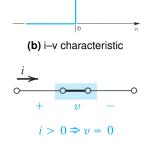
FIG 6. n-types and p-type arrangement in a diode

FIG 7. Various types of diodes¹

¹Gupta, K. M., & Gupta, N. (2015). Different Types of Diodes, Ideal and Real Diodes, Switching Diodes, Abrupt and Graded Junctions. Engineering Materials, 235–259

Kizito NKURIKIYEYEZU, Ph.D.



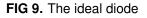

FIG 8. Various types of diodes and their schematic symbols²

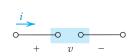
²Gupta, K. M., & Gupta, N. (2015). Different Types of Diodes, Ideal and Real Diodes, Switching Diodes, Abrupt and Graded Junctions. Engineering Materials, 235–259

Kizito NKURIKIYEYEZU, Ph.D.

- An ideal diode would be a perfect diode without any flaws (Fig. 9)
- Characteristics of ideal diode when forward biased
 - Zero resistance
 - Infinite amount of current
 - Zero threshold voltage, V_T
- Characteristics of an ideal diode when reverse biased
 - Infinite resistance
 - Zero reverse leakage currentNo reverse breakdown voltage
- NOTE: As Murphy's law would predict, no ideal diode exists.

¹https://en.wikipedia.org/wiki/Murphy%27s_law




Reverse bias -> <-- Forward bias

(c) equivalent circuit in the reverse direction

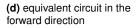
 $v < 0 \Rightarrow i = 0$

(d) equivalent circuit in the forward direction

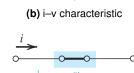
(a) diode circuit symbol

Cathode

Anode


- An ideal diode would be a perfect diode without any flaws (Fig. 9)
- Characteristics of ideal diode when forward biased
 - Zero resistance
 - Infinite amount of current
 - \blacksquare Zero threshold voltage, V_T
- Characteristics of an ideal diode
- NOTE: As Murphy's law would

¹https://en.wikipedia.org/wiki/Murphy%27s law



 $v < 0 \Rightarrow i = 0$ (c) equivalent circuit in the reverse direction

Anode

 $i > 0 \Rightarrow v = 0$

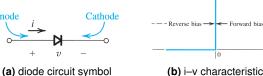


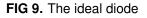
FIG 9. The ideal diode

- An ideal diode would be a perfect diode without any flaws (Fig. 9)
- Characteristics of ideal diode when forward biased
 - Zero resistance
 - Infinite amount of current
 - **Zero threshold voltage**, V_T
- Characteristics of an ideal diode when reverse biased
 - Infinite resistance
 - Zero reverse leakage current
 No reverse breakdown voltage
- NOTE: As Murphy's law would predict, no ideal diode exists.

¹https://en.wikipedia.org/wiki/Murphy%27s_law

(b) i-v characteristic $i \rightarrow v - v + v - v = 0$

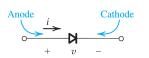
Reverse bias -> <-- Forward bias

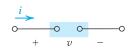

(c) equivalent circuit in the reverse direction

 $v < 0 \Rightarrow i = 0$

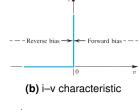
(a) diode circuit symbol

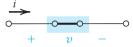
Anode


(d) equivalent circuit in the forward direction

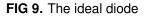

Cathode

- An ideal diode would be a perfect diode without any flaws (Fig. 9)
- Characteristics of ideal diode when forward biased
 - Zero resistance
 - Infinite amount of current
 - **Zero threshold voltage**, V_T
- Characteristics of an ideal diode when reverse biased
 - Infinite resistance
 - Zero reverse leakage currentNo reverse breakdown voltage
- NOTE: As Murphy's law would predict, no ideal diode exists.

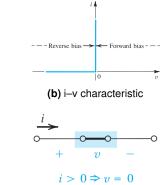



(a) diode circuit symbol

 $v < 0 \Rightarrow i = 0$

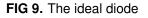

(c) equivalent circuit in the reverse direction

 $i > 0 \Rightarrow v = 0$


(d) equivalent circuit in the forward direction

- An ideal diode would be a perfect diode without any flaws (Fig. 9)
- Characteristics of ideal diode when forward biased
 - Zero resistance
 - Infinite amount of current
 - **Zero threshold voltage**, V_T
- Characteristics of an ideal diode when reverse biased
 - Infinite resistance
 - Zero reverse leakage current
 No reverse breakdown voltage
- NOTE: As Murphy's law would predict, no ideal diode exists.

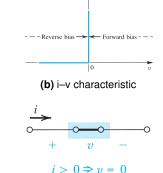
¹https://en.wikipedia.org/wiki/Murphy%27s_law


(c) equivalent circuit in the reverse direction

 $v < 0 \Rightarrow i = 0$

(a) diode circuit symbol

Anode

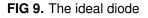

(d) equivalent circuit in the forward direction

Cathode

- An ideal diode would be a perfect diode without any flaws (Fig. 9)
- Characteristics of ideal diode when forward biased
 - Zero resistance
 - Infinite amount of current
 - **Zero threshold voltage**, V_T
- Characteristics of an ideal diode when reverse biased
 - Infinite resistance
 - Zero reverse leakage current
 - No reverse breakdown voltage
- NOTE: As Murphy's law would predict, no ideal diode exists.

¹https://en.wikipedia.org/wiki/Murphy%27s_law

 $l > 0 \Rightarrow v = 0$


(c) equivalent circuit in the reverse direction

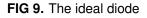
 $v < 0 \Rightarrow i = 0$

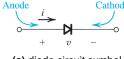
(a) diode circuit symbol

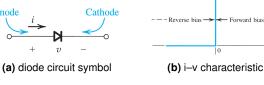
Anode

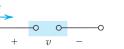
(d) equivalent circuit in the forward direction

Cathode


- An ideal diode would be a perfect diode without any flaws (Fig. 9)
- Characteristics of ideal diode when forward biased
 - Zero resistance
 - Infinite amount of current
 - \blacksquare Zero threshold voltage, V_T
- Characteristics of an ideal diode when reverse biased
 - Infinite resistance
 - Zero reverse leakage current No reverse breakdown voltage
- NOTE: As Murphy's law would


¹https://en.wikipedia.org/wiki/Murphy%27s law


 $i > 0 \Rightarrow v = 0$ (c) equivalent circuit in the


(d) equivalent circuit in the forward direction

0

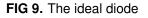
 $v < 0 \Rightarrow i = 0$

reverse direction

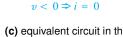
- An ideal diode would be a perfect diode without any flaws (Fig. 9)
- Characteristics of ideal diode when forward biased
 - Zero resistance
 - Infinite amount of current
 - \blacksquare Zero threshold voltage, V_T
- Characteristics of an ideal diode when reverse biased
 - Infinite resistance

Kizito NKURIKIYEYEZU. Ph.D.

- Zero reverse leakage current No reverse breakdown voltage
- NOTE: As Murphy's law would

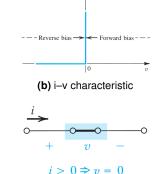

Reverse bias -> <-- Forward bias 0 (b) i-v characteristic

(c) equivalent circuit in the reverse direction


(a) diode circuit symbol

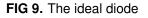
(d) equivalent circuit in the forward direction

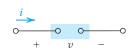
 $i > 0 \Rightarrow v = 0$


Cathode

Anode

- An ideal diode would be a perfect diode without any flaws (Fig. 9)
- Characteristics of ideal diode when forward biased
 - Zero resistance
 - Infinite amount of current
 - **Zero threshold voltage**, V_T
- Characteristics of an ideal diode when reverse biased
 - Infinite resistance
 - Zero reverse leakage current
 - No reverse breakdown voltage
- NOTE: As Murphy's law would predict, no ideal diode exists.

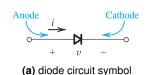

¹https://en.wikipedia.org/wiki/Murphy%27s_law

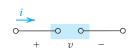


(c) equivalent circuit in the reverse direction

 $v < 0 \Rightarrow i = 0$

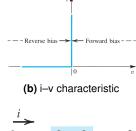
(d) equivalent circuit in the forward direction

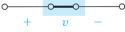



(a) diode circuit symbol

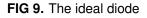
Cathode

Anode


- An ideal diode would be a perfect diode without any flaws (Fig. 9)
- Characteristics of ideal diode when forward biased
 - Zero resistance
 - Infinite amount of current
 - **Zero threshold voltage**, V_T
- Characteristics of an ideal diode when reverse biased
 - Infinite resistance
 - Zero reverse leakage current
 - No reverse breakdown voltage
- NOTE: As Murphy's law would predict, no ideal diode exists.



 $v < 0 \Rightarrow i = 0$


(c) equivalent circuit in the reverse direction

 $i > 0 \Rightarrow v = 0$

(d) equivalent circuit in the forward direction

Real diode

Real diodes do not follow the ideal diode equation because of physical limitations of device fabrication or design techniques. In a real diode:

- \blacksquare R_F is of the order of a few ohms.
- $V_F \approx 0.7$ for silicon and $V_F \approx 0.3$ for germanium based diodes.
- Reverse bias resistance *R_r* is of the order of a few kilo ohms.

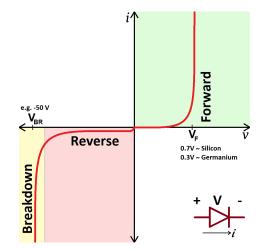


FIG 10. The I-V relationship of a real diode²

²https://learn.sparkfun.com/tutorials/diodes/real-diode-characteristics

Kizito NKURIKIYEYEZU, Ph.D.

Real diode

Real diodes do not follow the ideal diode equation because of physical limitations of device fabrication or design techniques. In a real diode:

- \blacksquare R_F is of the order of a few ohms.
- $V_F \approx 0.7$ for silicon and $V_F \approx 0.3$ for germanium based diodes.
- Reverse bias resistance *R_r* is of the order of a few kilo ohms.

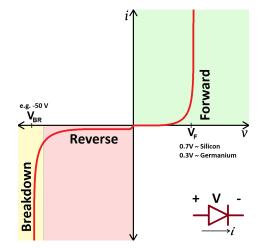


FIG 10. The I-V relationship of a real diode²

²https://learn.sparkfun.com/tutorials/diodes/real-diode-characteristics

Kizito NKURIKIYEYEZU, Ph.D.

Real diode

Real diodes do not follow the ideal diode equation because of physical limitations of device fabrication or design techniques. In a real diode:

- \blacksquare R_F is of the order of a few ohms.
- $V_F \approx 0.7$ for silicon and $V_F \approx 0.3$ for germanium based diodes.
- Reverse bias resistance *R_r* is of the order of a few kilo ohms.

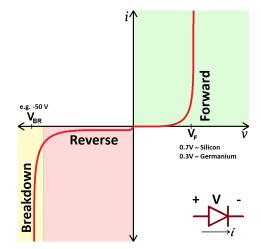


FIG 10. The I-V relationship of a real diode²

²https://learn.sparkfun.com/tutorials/diodes/real-diode-characteristics

Kizito NKURIKIYEYEZU, Ph.D.

TAB 1. Ideal diode versus real diode

Ideal diode	Real diode
No reverse leakage current	There exists some leakage current
Can behave as a perfect conductor (R=0)	No such perfection exists in the real-world
Can behave as a perfect insulator ($R = \infty$)	No such perfection exists in the real-world
Draws no current when reverse biased	Normally draws very low current in reverse bias
Have infinite resistance	Have high resistance, but not infite
No voltage drops when forward biased.	very low voltage drop when forward biased.
Acts like a short circuit in the forward-bias mode	$V_{\mathcal{T}} eq 0$ when current flows through it
Acts like an open circuit in a reverse-bias mode	Reverse-bias resistance is of a few kilo-ohms
It cannot be manufactured.	it is manufactored, duh!

EXAMPLE—1N4148 diode characteristics

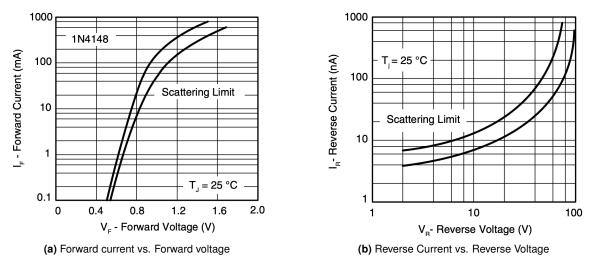

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	I _F = 10 mA	V _F			1	V
Reverse current	V _R = 20 V	I _R			25	nA
	V _R = 20 V, T _j = 150 °C	I _R			50	μA
	V _R = 75 V	I _R			5	μA
Breakdown voltage	$I_R = 100 \ \mu A, \ t_p/T = 0.01, \ t_p = 0.3 \ ms$	V _(BR)	100			V
Diode capacitance	$V_R = 0 V$, f = 1 MHz, $V_{HF} = 50 mV$	CD			4	pF
Rectification efficiency	V _{HF} = 2 V, f = 100 MHz	η _r	45			%
Reverse recovery time	$I_F = I_R = 10 \text{ mA},$ $i_R = 1 \text{ mA}$	t _{rr}			8	ns
	$\label{eq:IF} \begin{array}{l} I_{F} = 10 \mbox{ mA}, V_{R} = 6 \mbox{ V}, \\ i_{R} = 0.1 \mbox{ x} I_{R}, R_{L} = 100 \Omega \end{array}$	t _{rr}			4	ns

FIG 11. Electrical characteristics of a 1N4148 diode

The 1N4148 diode is a standard silicon switching signal diode. The 1N4148 was first developed 1960 by Texas Instruments and is useful in switching applications up to about 100 MHz with a reverse-recovery time of no more than 4ns

²The 1N4148's datashet is available at https://www.vishay.com/docs/81857/1n4148.pdf Kizito NKURIKIYEYEZU, Ph.D. The Ideal Diode May 23, 2022 10/14

EXAMPLE—1N4148 diode characteristics

FIG 12. Typical behaviors of 1N4148 diode at $T = 25 \degree C$

Application—the rectifier circuit

- Rectifier—A circuit which converts AC waves in to DC.
- The diode blocks reverse current flow, preventing negative voltage across the resistor *R*.

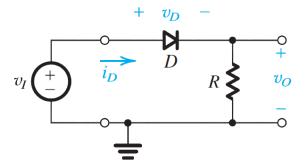
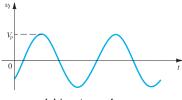
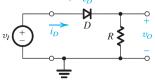
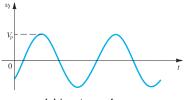
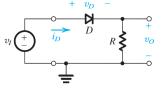
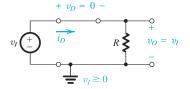



FIG 13. A rectifier circuit


Application—the rectifier circuit

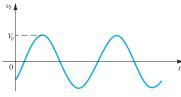


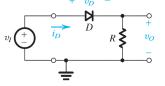


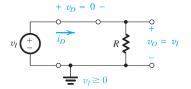

(a) input waveform

(b) The rectifier circuit.

Application—the rectifier circuit

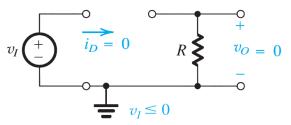



(a) input waveform


(b) The rectifier circuit.

(c) Equivalent circuit when $v_l \ge 0$

Application—the rectifier circuit



(a) input waveform

(b) The rectifier circuit.

(c) Equivalent circuit when $v_l \ge 0$

(d) Equivalent circuit when $v_l \leq 0$

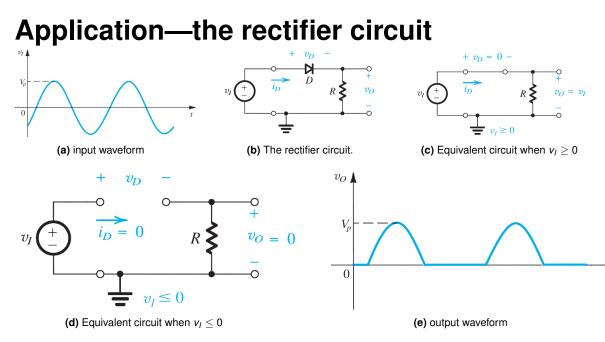
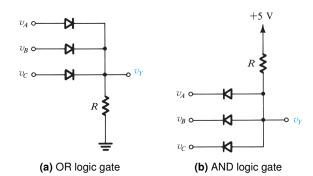


FIG 14. A half wave rectifier allows one half-cycle of an AC voltage waveform to pass, blocking the

Kizito NKURIKIYEYEZ


ZU, Ph.D.	The Ideal Diode	May 23, 2022	13 / 14

■ OR logic gate (Fig. 15a)

- If $v_A = 5V$, then the diode D_A will conduct and $v_Y = v_A = 5V$
- Similary, if any diode conducts, then $v_Y = 5V$
- The output $v_Y = v_A + v_B + v_C$

AND gate (Fig. 15b)

- If $v_A = 0V$ then diode D_A will conduct and $v_Y = v_A = 0V$
- If all diodes block then $v_Y = 5 V$
- The output $v_Y = v_A \cdot v_B \cdot v_C$

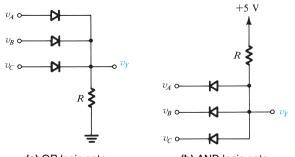


FIG 15. Diode logic gates

²This analysis, of course, assumes we are using ideal diodes

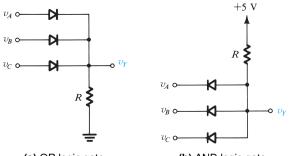
Kizito NKURIKIYEYEZU, Ph.D.

- OR logic gate (Fig. 15a)
 - If $v_A = 5V$, then the diode D_A will conduct and $v_Y = v_A = 5V$
 - Similary, if any diode conducts, then $v_Y = 5V$
 - The output $v_Y = v_A + v_B + v_C$
- AND gate (Fig. 15b)
 - If $v_A = 0V$ then diode D_A will conduct and $v_Y = v_A = 0V$
 - If all diodes block then $v_Y = 5 V$
 - The output $v_Y = v_A \cdot v_B \cdot v_C$

(a) OR logic gate

(b) AND logic gate

FIG 15. Diode logic gates


²This analysis, of course, assumes we are using ideal diodes

Kizito NKURIKIYEYEZU, Ph.D.

- OR logic gate (Fig. 15a)
 - If $v_A = 5V$, then the diode D_A will conduct and $v_Y = v_A = 5V$
 - Similary, if any diode conducts, then $v_Y = 5V$
 - The output $v_Y = v_A + v_B + v_C$

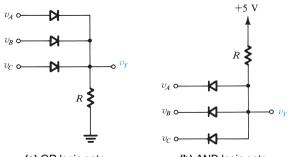
■ AND gate (Fig. 15b)

- If $v_A = 0V$ then diode D_A will conduct and $v_Y = v_A = 0V$
- If all diodes block then $v_Y = 5 V$
- The output $v_Y = v_A \cdot v_B \cdot v_C$

(a) OR logic gate

(b) AND logic gate

FIG 15. Diode logic gates


²This analysis, of course, assumes we are using ideal diodes

Kizito NKURIKIYEYEZU, Ph.D.

- OR logic gate (Fig. 15a)
 - If $v_A = 5V$, then the diode D_A will conduct and $v_Y = v_A = 5V$
 - Similary, if any diode conducts, then $v_Y = 5V$
 - The output $v_Y = v_A + v_B + v_C$

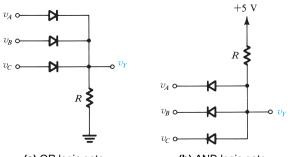
AND gate (Fig. 15b)

- If $v_A = 0V$ then diode D_A will conduct and $v_Y = v_A = 0V$
- If all diodes block then $v_Y = 5 V$
- The output $v_Y = v_A \cdot v_B \cdot v_C$

(a) OR logic gate

(b) AND logic gate

FIG 15. Diode logic gates


²This analysis, of course, assumes we are using ideal diodes

Kizito NKURIKIYEYEZU, Ph.D.

- OR logic gate (Fig. 15a)
 - If $v_A = 5V$, then the diode D_A will conduct and $v_Y = v_A = 5V$
 - Similary, if any diode conducts, then $v_Y = 5V$
 - The output $v_Y = v_A + v_B + v_C$

■ AND gate (Fig. 15b)

- If $v_A = 0V$ then diode D_A will conduct and $v_Y = v_A = 0V$
- If all diodes block then $v_Y = 5V$
- The output $v_Y = v_A \cdot v_B \cdot v_C$

(a) OR logic gate

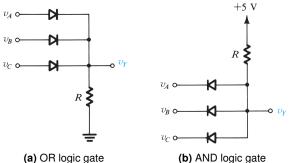

(b) AND logic gate

FIG 15. Diode logic gates

²This analysis, of course, assumes we are using ideal diodes

Kizito NKURIKIYEYEZU, Ph.D.

- OR logic gate (Fig. 15a)
 - If $v_A = 5V$, then the diode D_A will conduct and $v_Y = v_A = 5V$
 - Similary, if any diode conducts, then $v_{\rm Y} = 5V$
 - The output $v_Y = v_A + v_B + v_C$
- AND gate (Fig. 15b)
 - If $v_A = 0V$ then diode D_A will conduct and $v_Y = v_A = 0V$
 - If all diodes block then $v_V = 5V$
 - The output $V_Y = V_A \cdot V_B \cdot V_C$

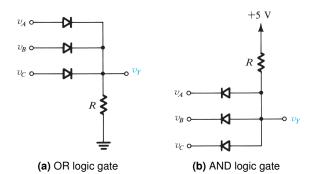

(b) AND logic gate

FIG 15. Diode logic gates

²This analysis, of course, assumes we are using ideal diodes

Kizito NKURIKIYEYEZU. Ph.D.

- OR logic gate (Fig. 15a)
 - If $v_A = 5V$, then the diode D_A will conduct and $v_Y = v_A = 5V$
 - Similary, if any diode conducts, then $v_Y = 5V$
 - The output $v_Y = v_A + v_B + v_C$
- AND gate (Fig. 15b)
 - If $v_A = 0V$ then diode D_A will conduct and $v_Y = v_A = 0V$
 - If all diodes block then $v_Y = 5V$
 - The output $v_Y = v_A \cdot v_B \cdot v_C$

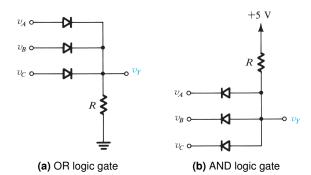


FIG 15. Diode logic gates

²This analysis, of course, assumes we are using ideal diodes

Kizito NKURIKIYEYEZU, Ph.D.

- OR logic gate (Fig. 15a)
 - If $v_A = 5V$, then the diode D_A will conduct and $v_Y = v_A = 5V$
 - Similary, if any diode conducts, then $v_Y = 5V$
 - The output $v_Y = v_A + v_B + v_C$
- AND gate (Fig. 15b)
 - If $v_A = 0V$ then diode D_A will conduct and $v_Y = v_A = 0V$
 - If all diodes block then $v_Y = 5V$
 - The output $v_Y = v_A \cdot v_B \cdot v_C$

FIG 15. Diode logic gates

²This analysis, of course, assumes we are using ideal diodes

Kizito NKURIKIYEYEZU, Ph.D.

The end